- 1029 Просмотров
- Обсудить
§4. Канон Поликлета
1. Числовая структура художественного произведения
Нам предстоит теперь проанализировать отношение древнего пифагорейства специально к художественному произведению, хотя, как мы видели выше, основным и самым главным произведением искусства для пифагорейцев был чувственный космос со своей гармонией сфер и с пропорциональным распределением в нем физико-геометрических и музыкально-арифметических соотношений. Древние пифагорейские материалы содержат некоторые данные о художественном произведении и в обычном смысле слова. А именно, известный скульптор V в. до н.э. Поликлет, как мы увидим ниже, вполне определенно связан с пифагорейской математической пропорцией, будучи автором трактата о числовых пропорциях в скульптуре, а также автором скульптурного произведения под именем "Канон", который предлагался как образец для всякого скульптурного произведения ("Канон" по-гречески значит "правило").
Уже самый факт появления трактата и статуи под названием "Канон", принадлежащих пифагорейскому автору, является весьма характерным. Здесь сказалась и телесность пифагорейского числа, и его структурная правильность, и его регулятивный характер для всякого построения (а особенно художественного), и его эстетический характер, не противоречащий художественному производству, а, наоборот, совпадающий с ним. Материалы о Поликлете, как и все пифагорейские материалы, отличаются большой разбросанностью. Их очень трудно объединить в одно целое и сформулировать скрытую здесь эстетическую теорию. Тем не менее канон Поликлета десятки раз подвергался разного рода обследованиям и интерпретациям.
2. Исходный пункт
Исходным пунктом нашего представления о каноне Поликлета является текст механика Филона (Phil. mechan. IV 1, ed. R.Schöne, Berl. 1893, p. 49, 20 Маков.). "Так многие, принявшись за изготовление орудий одинаковой величины и воспользовавшись той же самой конструкцией, одинаковым деревом и равным количеством железа без перемены самого веса, сделали одни орудия дальнобойными и сильными по своему удару, другие же – больше отстающими от названных. И когда их спрашивают о причине этого, они не могут назвать такой причины. Поэтому для того, что будет говориться в дальнейшем, подходящим является изречение, высказанное ваятелем Поликлетом: "Успех (to ey) [художественного произведения] получается от многих числовых отношений, причем любая мелочь может его нарушить". Очевидно, таким образом и в данном искусстве [механике] при создавании сооружения с помощью множества чисел приходится делать в результате большие ошибки, если допускать хотя бы малую погрешность в частных случаях"46.
Эти тексты для нас крайне важны. Прежде всего, мы снова убеждаемся, что 1) основой искусства мыслится здесь форма ("эйдос"), что 2) эта форма как таковая противостоит материи (ибо одна и та же материя под воздействием разных форм создает и разные произведения), что 3) эта форма – все же вещественная, техническая, механическая, внешне-оформляющая и что, следовательно, тут нет переживания и психологии, а есть только изображение вещей, что 4) форма эта очень четкая, заметная в каждом ногте, не терпящая даже малейшей фальши, что, наконец, 5) эта внешне-вещественная форма, не будучи психологически-переживательной, все же является в своем действии живой и жизненной.
Вот что такое канон Поликлета в его первичном, наиболее общем виде.
3. Симметрия живого тела
Более конкретно вводит нас понимание теории Поликлета следующий текст Галена (Gal. Plac. Hipp. et Plat. V 9. p. 425. 14 Müll.) "[Хрисипп] ясно показал это при помощи приведенного несколько выше рассуждения, в котором он называет здоровье тела симметрией теплого, холодного, сухого и влажного [того, что, как известно, является первичными элементами тел]. Красота же, по его мнению, заключается не в симметрии [физических] элементов, но в симметрии частей, т.е. в симметрии пальца с пальцем, всех пальцев – с пястью и кистью, а этих последних – с локтем и локтя – с рукой и всех [вообще] частей – со всеми. Как это написано "в Каноне" Поликлета? Именно, преподавши всем нам симметрию тела в этом сочинении, Поликлет подтвердил свое слово делом – путем сооружения статуи в соответствии с указаниями своего учения. И, как известно, он назвал "Каноном" и эту свою статую и это сочинение. Очевидно, по мнению всех врачей и философов, красота тела заключается в симметрии частей".
Этот текст важен в разных смыслах. Прежде всего, контекст говорит о теории здоровья как соразмерности первичных физических элементов. Это – вполне классический образ мыслей. Во-вторых же, красота мыслится здесь не как симметрии первичных физических элементов, а как симметрия частей, т.е. как симметрия элементов в нашем смысле "элемент", не в смысле первичного вещества, а в смысле частичного проявления целого. Это значит, что 1) явление красоты базируется у Поликлета не просто на чувственности, но на известном ее оформлении, что 2) оформление это мыслится здесь опять-таки математически и что, наконец, 3) эта математичность еще остается здесь проблемой именно внешнего и вещественного оформления. Все эти черты прекрасно рисуются сообщениями Галена.
К этому надо привлечь сообщение Плиния (Plin. nat. hist. ХХХIV 55 Варн.): "Сделал Поликлет также копьеносца, возмужалого юношу. Ее [статую] художники зовут каноном и получают от нее, словно из какого-нибудь закона, основания своего искусства и Поликлета считают единственным человеком, который из произведения искусства сделал его теорию". Из этого текста мы должны сделать важный вывод, что в понятие классического идеала уже входит некоторое рефлектирование над искусством как таковым. Однако в соответствии с принципами античной классики вообще искусство в данном случае отнюдь не становится "чистым", "незаинтересованным", изолированным от сферы прочего бытия. Оно, будучи искусством, рассматривается, тем не менее, как вид живого и вещественного бытия, но только бытие это специфически оформлено. И эта вещественность искусства доходит у Поликлета до создания статуи "Канон". Тут не что иное, как зрелый классический идеал. Форма искусства не есть тут нечто идеальное, невещественное, бесплотное. Наоборот, она суть тело, определенное тело. Статуя Поликлета "Канон" и была такой формой искусства, идеальной и реальной сразу.
4. Понятие центра
Как же конкретно Поликлет представлял себе соразмерность человеческого тела? Об этом читаем, прежде всего, у того же Галена (Gal. De temper. 19 Helmr.). "Вот, значит, какой это метод. Получить без труда навык узнавать центр (to meson) в каждом роде живых существ и во всем существующем не является делом кого попало, но – такого человека, который крайне трудолюбив и который может находить этот центр при помощи длительного опыта и многократного познавания всех частностей. Этим способом например, и ваятели, живописцы и скульпторы, и вообще изготовители статуй пишут и ваяют в каждом роде то, что является наиболее прекрасным, как-то: красивого по наружности человека или лошадь, или корову, или льва, – в [каждом] таком роде. При этом получает похвальные отзывы какая-то статуя Поликлета под названием "Канон", достигающая этого названия потому, что она содержит в себе точную взаимную симметрию всех своих частей".
Итак, соразмерность человеческого тела ориентирована у Поликлета на определенный центр, т.е. предполагает это тело как нечто целое. O понятии центра в античной эстетике и философии вообще мы уже имели случай говорить выше. Если мы сравним эту поликлетовскую установку, например, с египетской манерой симметрии, то мы, безусловно, заметим, что Поликлет ориентируется на живое человеческое тело, в то время как в Египте интересовались, главным образом, совершенно априорными схемами. Последний из приведенных текстов Галена, гласящий о статуе как целом, о симметрии входящих в нее элементов (ср. еще и предыдущий текст Галена), вскрывает существенную сторону греческого учения о пропорциях в отличие от египетского. Греки не исходили от какой-то единицы измерения, чтобы потом, путем умножения этой единицы на то или иное целое число, получить желаемые размеры отдельных частей тела. Греки исходили из данных самих частей независимо от того, из какой общей меры, принятой за единицу, эти части получаются. У Поликлета брался рост человека как целое, как единица; потом фиксировалась отдельная часть тела как таковая, какова бы она ни была по своим размерам, и уже только после этого фиксировалось отношение каждой такой части к целому. Ясно, что тут не могли получаться целые числа. Каждая часть в отношении целого выражалась дробью, в которой числитель всегда был единицей, а знаменатель варьировался в связи с реальными размерами данной части. Отношение же между отдельными частями выражалось еще более сложными дробями и даже иррациональными числами. К этим результатам пришло и известное измерение поликлетова Дорифора, предпринятое Калькманом47. Пропорциональность развивалась здесь не от какой-то априорной единицы измерения – не имеющей ничего общего ни с отдельными частями тела, ни с самим телом, взятым как целое, – к обработке всего тела как такового. Напротив, пропорциональность строилась тут вне всякой абстрактной меры, от одной реальной части тела к другой и к самому телу как целому. Здесь выступала чисто антропо-метрическая точка зрения вместо египетского условного априоризма. Здесь, прежде всего, учитывались реальные органические соотношения, царящие в человеческом теле, включая всю сферу его эластических движений и ориентированность его в окружающей обстановке. При фиксировании целого тут уже нельзя было игнорировать "точку зрения" наблюдателя. Было важно, находится ли статуя прямо перед наблюдателем или она помещена очень высоко. Так, например, уже не раз указывалось, что Афина Фидия имеет объективно вовсе не те пропорции, какие представляются смотрящему на нее снизу. Изображение Химеры, включающее части разных живых существ, имеет цельную структуру пропорций, а не несколько их типов, как египетский сфинкс.
Зрительная ориентированность греческой статуи еще яснее выражена в одном анекдоте Диодора Сицилийского (историк I в. до н.э.), не связанном, правда, непосредственно с Поликлетом, но все же весьма характерном и выразительном для греческих пропорций вообще. Диодор (Diod. 198) пишет: "Из древних скульпторов наибольшею славою пользовались у них Телекл и Феодор, сыновья Река, которые соорудили для самосцев статую Аполлона Пифийского. Рассказывают, что одна половина этой статуи была приготовлена Телеклом на Самосе, другая же часть была сделана его братом Феодором в Эфесе. Будучи сложенными, эти части настолько соответствовали одна другой, что казалось будто все произведение исполнено одним [мастером]. Однако этот род работы никогда не применяется у греков, но большею частью употребляется у египтян. В самом деле, о симметрии статуй у них судят не с точки зрения представления, получаемого в соответствии с [реальным] видением (oyc apo tes cata ten horasin phan tasias), как это происходит у греков, но всякий раз, когда они кладут камни и обрабатывают их путем дробления, в это самое время они пользуются одной и той же аналогией от наименьшей [величины] до наибольшей, поскольку они создают симметрию живого существа путем разделения всей величины его тела на 21 1/4 частей. Поэтому, когда художники условливаются [здесь] друг с другом относительно размеров, то, несмотря на свое разделение друг от друга, они создают в своих произведениях настолько точно совпадающие размеры, что своеобразие их мастерства способно вызывать изумление. Упомянутая самосская статуя, если, согласно с египетскими методами искусства, делить ее по темени надвое, определяет середину тела вплоть до полового члена, оказываясь, таким образом, равной самой себе со всех сторон. Говорят, что она больше всего похожа на египетские статуи, поскольку руки ее как бы распростерты, а ноги растопырены"48.
Этот рассказ лучше всяких теоретических доказательств обнаруживает все своеобразие греческого чувства телесных пропорций и вырастающих из него греческих художественно-технических измерений и канонов. Самое главное это то, что греки судят "с точки зрения представления, получаемого в соответствии с (реальным) видением". Это – то, чего нет ни в строгих канонах Египта, ни в средневековой практике и что возродилось лишь в новое время у Леонардо да Винчи и Дюрера.
Будь-те первым, поделитесь мнением с остальными.