- 1062 Просмотра
- Обсудить
3. Ранговая корреляция Ранговая корреляция – метод корреляционного анализа, отражающий отношения переменных, упорядоченных по возрастанию их значения. Наиболее часто ранговая корреляция применяется для анализа связи между признаками, измеряемыми в порядковых шкалах (см. шкалы измерительные), а также как один из методов определения корреляции качественных признаков. Достоинством коэффициентов ранговой корреляции является возможность их использования независимо от характера распределения коррелирующих признаков. В практике наиболее часто применяются такие ранговые меры связи, как коэффициенты ранговой корреляции Спирмена и Кендалла. Первым этапом расчета коэффициентов ранговой корреляции является ранжирование рядов переменных (табл. 2). Процедура ранжирования начинается с расположения переменных по возрастанию их значений. Разным значениям присваиваются ранги, обозначаемые натуральными числами. Если встречается несколько равных по значению переменных, им присваивается усредненный ранг. Таблица 2 Ранжирование распределения показателей теста (n = 18) В таблице 2 приведены данные для расчета коэффициентов ранговой корреляции. Во второй графе представлены ранжированные показатели по первому из сравниваемых распределений (оценка IQ, в третьей графе – соответствующие им данные теста зрительной памяти). Коэффициент корреляции рангов Спирмена (rs) определяется из уравнения: где di – разности между рангами каждой переменной из пар значений X и Y; n – число сопоставляемых пар. Используя данные таблицы 2, получаем: Коэффициент корреляции рангов Кендалла τ определяется следующей формулой: где Р и Q рассчитываются по таблице 12. Так, в восьмой графе подсчитывается, начиная с первого объекта X, сколько раз его ранг по Y меньше, чем ранг объектов, расположенных ниже. Соответственно, в девятой графе (S2) фиксируется, сколько раз ранг Y больше, чем ранги, стоящие ниже его в столбце X. Подставляя эти данные в формулу, получаем: При сопоставлении приведенных коэффициентов оказывается, что коэффициент τ более информативен, чем rs, и рассчитывается проще. Поэтому на практике при расчете рановой корреляции отдают предпочтение коэффициенту τ (табл. 3). Таблица 3 Распределение IQ-оценок и показателей теста зрительной памяти ЛЕКЦИЯ № 15. Измерительные шкалы Измерительные шкалы (от лат. scala – «лестница») – форма фиксации совокупности признаков изучаемого объекта с упорядочиванием их в определенную числовую систему. Измерительные шкалы представляют собой метрические системы, моделирующие исследуемый феномен путем замены прямых обозначений изучаемых объектов числовыми значениями и отображение пропорций континуального состава элементов объекта в соответствующих числах. Каждому элементу совокупности проявлений свойств изучаемого объекта соответствует определенный балл или шкальный индекс, количественно устанавливающий положение наблюдаемой единицы на шкале, которая охватывает всю совокупность или ее часть, существенную с точки зрения задач исследования. Операция упорядочивания исходных эмпирических данных в шкальные носит название шкалирования. Измерительные шкалы являются главным средством сбора и анализа статистического материала как в прикладных, так и в теоретических исследованиях. Они различаются в зависимости от характера функции, лежащей в основе их построения. В качестве такой функции могут служить: сравнение по признаку убывания или возрастания, ранжирование, оценка интенсивности признака или оценка пропорциональных отношений между признаками. Наиболее общая классификация измерительных шкал предложена С. Стивенсон. В ее основу положен признак метрической детерминированности. Согласно этому признаку шкалы делятся на метрические (интервальные и шкалы отношений) и неметрические (номинативные, шкалы порядка).
Никто не решился оставить свой комментарий.
Будь-те первым, поделитесь мнением с остальными.
Будь-те первым, поделитесь мнением с остальными.