Меню
Назад » »

Логос (381)

Кипение

Кипение — явление, обнаруживаемое жидкостями, когда во всей массе их происходит образование пузырьков пара. Если же пар образуется только на поверхности жидкости, то происходит испарение; жидкий пар, находясь под давлением окружающей жидкости, может появиться только тогда, когда давление в этой точке жидкости не превышает упругости насыщенного пара при темп. жидкости. Поэтому, при данном давлении, К. данной жидкости наблюдается при определенной температуре. Под именем температуры кипения разумеют температуру К. под нормальным давлением атмосферы, равным 760 мм. ртутного столба (В статье Сocтояния тел (три состояния) будут помещены таблички, показывающие температуры плавления и кипения тел). Практически опыт редко осуществляется при этом условии, и потому приходится находить искомую температуру К. при помощи поправки. Температура К. — характерный признак жидкости, а явление К. — весьма употребительный способ разделения жидкостей и испытания их чистоты. Мы рассмотрим: 1) условия К., 2) нахождение температуры К., 3) К. смесей и растворов, 4) зависимость между температурой К. и составом жидкости.

1) Условия К. При данной температуре на поверхности жидкости устанавливается определенное давление ее пара, которое называется упругостью насыщенного пара. Образование пара наступает немедленно, если имеется свободная поверхность жидкости. Если же жидкость смачивает твердое тело, или, если дело идет о явлениях внутри жидкости, то жидкость можно при этих условиях нагреть до температуры высшей, чем темпер. К., а самого К. не произойдет. Сверх внешнего давления в этом случае нужно преодолеть еще силы сцепления и, потому, образование пара происходит лишь при температуре более высокой. Этим обуславливается возможность «перегревания» жидкостей, т. е. нагревание их выше температуры К., без К. В перегретом состоянии достаточно образовать внутри жидкости ничтожную свободную поверхность, чтобы вызвать образование громадных количеств пара. К. происходит тогда взрывом, при чем темпер. перегретой жидкости сразу падает до температуры К. Если не соблюдены особые условия, то К. должно неизбежно происходить толчками при резких колебаниях температуры жидкости. Такой вид К. представляет большую опасность для паровых котлов; вода, находящаяся в таких условиях К., называется сонной водой. «Перегревание» — нормальное явление для жидкостей, а потому на практике колебания температуры внутри жидкости во время К. наблюдаются в большей или меньшей степени всегда. Чем ровнее кипит жидкость, тем эти колебания меньше. Чтобы достигнуть ровного К., нужно, чтобы не только внешняя горизонтальная поверхность жидкости была свободна, но чтобы подобные же условия имели место и в глубине, чтобы там жидкость соприкасалась с твердыми телами, напр. со стенками сосуда, не вполне их смачивая. В этом отношении громадное влияние оказывает способность поверхностей твердых тел сгущать газы и упорно их удерживать. Поверхности твердых тел всегда обладают такой оболочкой сгущенного воздуха, а потому и образование пузырьков газа наблюдается у стенок сосуда, или у погруженной в жидкость палочки, или у плавающей в жидкости пылинки. По мере того, как К. продолжается, вместе с парами уходит с поверхности твердых тел, соприкасающихся с жидкостью, сгущенный газ и происходит полное смачивание. Тогда наступают условия перегревания, и жидкость начинает кипеть толчками. Устранить это явление можно несколькими способами. Или во время К. во внутрь жидкости пропускают весьма слабый ток газа, или к жидкости прибавляют твердого тела, лежавшего на воздухе, в порошке (чаще всего прибавляют тальк, как минерал, мало поддающийся химическим действиям). Для той же цели смазывают стенки паровых котлов смолой. Тогда смола, медленно разлагаясь, от нагревания дает постоянно газы, обуславливающие ровное К. и, сверх того, препятствующие осаждению на стенках плотной накипи.

2) Нахождение температуры К. производится погружением термометра в пары кипящей жидкости, а не в самую жидкость.

Температура кипящей жидкости может, как указано выше, значительно колебаться и, сверх того, она изменяется с глубиной. Чем глубже образуются в жидкости пузырки пара, тем большему внешнему давлению они подвержены и тем выше, следовательно, должна быть их температура, ибо к давлению атмосферы на поверхности присоединяется вес столба жидкости. Выходя с поверхности жидкости, пар принимает температуру, отвечающую температуре насыщенного пара при давлении атмосферы, которое мы наблюдаем. Необходимо при этом только защитить термометр от лучистой теплоты. Найденную таким образом температуру К. необходимо исправить, чтобы привести к нормальным условиям. Не всегда весь ртутный столб удается погрузить в пары; тогда вводится поправка термометра .Чтобы затем найти температуру К., отвечающую нормальному атмосферному давлению, нужно знать, как изменяется упругость насыщенного пара с температурой. Эти изменения различны у разных жидкостей. В среднем можно принять, что изменение атмосферного давления на 26 мм. вызывает перемену в температуре К. на один градус.

К. смесей и растворов. Перегонка. Если наблюдение температуры К. произведено правильно, то однородная жидкость показывает во все время К. одну и ту же, характерную температуру. Непостоянство температуры К. — верный признак присутствия в жидкости посторонних подмесей. Чтобы отделить эти подмеси, К. соединяют с сжижением пара и тогда операция носит название перегонки. Пары кипящей жидкости вводят в холодильник и стекающую из него жидкость разделяют на фракции с различной температурой К. Применяя «повторную перегонку», достигают выделения жидкостей с более или менее постоянной температурой К. Достижение результата ускоряется применением дефлегматоров — приборов, в которых часть пара сгущается в жидкость, стекающую обратно в кипятильник .

Под явлением К. нужно различать два случая: К. неоднородной смеси и К. раствора. К. смеси двух жидкостей, нерастворяющихся друг в друге, представляет весьма интересные особенности. Температура К. остается постоянной, пока имеется смесь, и всегда ниже, чем температура К. каждой из жидкостей в отдельности. Каждая из жидкостей образует насыщенный пар с той же упругостью, как в отдельном состоянии, и К. начинается тогда, когда сумма упругостей насыщенных паров обеих жидкостей достигает величины атмосферного давления. Давление пара каждой из жидкостей оказывается, поэтому, меньше атмосферного и К. происходит, как под уменьшенным давлением. Этим пользуются часто, чтобы перегнать с водяным паром при температуре ниже 100° жидкости, несмешивающиеся с водой и кипящие при температуре гораздо более высокой. Этим способом отгоняют также из частей растений пахучие эссенции, эфирные масла и т. п. Если перегонке подвергаются только две несмешивающиеся жидкости, то во все время К. смеси наблюдается постоянная температура и постоянное отношение между количествами жидкостей в перегоне. Определив это отношение, зная температуру К. смеси и давление, под которым производится перегонка, можно найти величину упругости и плотности пара одной из жидкостей, если для другой жидкости эти величины известны.

К. растворов. Простейший случай наблюдается, когда в жидкости растворено не летучее твердое тело. Тогда температура К. всегда является повышенной и тем больше, чем больше содержание твердого тела. Для наблюдения температуры К. в этом случае необходимо, однако, термометр ввести в пары предварительно нагретым. Если это невыполнено, то на холодной поверхности термометра осядет чистая жидкость, и термометр долгое время будет показывать температуру К. не раствора, а чистой жидкости. Простой зависимости между температурой К. и содержанием твердого тела в растворе не наблюдается; взамен этого для данного случая существуют простые отношения между упругостями пара раствора и чистой жидкости при постоянной температуре. В случае раствора двух жидкостей каждая из них выделяет пары, представляющие также меньшую упругость, чем пары чистой жидкости при той же температуре. К. наступает тогда, когда сумма упругостей равна атмосферному давлению. Чем больше содержание в растворе одной из жидкостей, тем более понижена упругость пара другой, с нею смешанной. Величины упругостей паров и весовые отношения тел в парах меняются при изменении состава раствора. Поэтому, при К. раствора наблюдают вообще непрерывное изменение температуры К. и непрерывное изменение состава перегона, причем в первых фракциях преобладает жидкость с более низкой температурой К. В редких случаях растворы двух жидкостей, составленные в определенной пропорции, представляют постоянную температуру К. и дают перегон одного и того же состава во все время перегонки. Избыток одной из жидкостей делает температуру К. в этом случае так же изменяющейся; но, по удалении избытка повторенной перегонкой, мы снова получаем раствор того же состава с постоянной температурой К. Taкиe «постоянно-кипящие» растворы, по своему характеру приближающиеся к определенным химическим соединениям и потому представляющие значительный интерес, были предметами многих исследований. Признак таких растворов: одинаковость весовых отношений тел в парах и в растворе. Только в таком случае, при кипении раствора, состав его будет оставаться неизменным. Исходя из простых механических условий парообразования, можно вывести, что это условие должно быть соблюдено при определенных соотношениях между величинами упругостей пара жидкостей в отдельном состоянии и величинами упругостей пара их растворов. В обычных случаях, упругости пара растворов представляют величины средние между величинами упругостей пара взятых жидкостей. При К. таких растворов, температура К. непрерывно меняется в пределах температур К. жидкостей, образующих раствор, и, в тоже время, непрерывно меняется состав перегона, причем в первых его фракциях преобладает жидкость с низшей температурой К. Если же упругости пара растворов представляют величины или большие, или меньшие, чем для жидкостей в отдельном состоянии, то явления К. раствора существенно меняются. Теория показывает, что здесь необходимо должен существовать раствор, представляющий одинаковые весовые отношения тел в парах и в растворе и, следовательно, неизменяющийся при К. Такой раствор отвечает или наибольшей, или наименьшей упругости пара, т. е. представляет или наиболее высокую, или наиболее низкую температуру К. из всех растворов, которые образует данная пара жидкостей. Так, вода с температурой К. 100 (и азотная кислота с температурой К. 86(образуют раствор, неизменяющийся в составе при К. и кипящий при 120,5°. Раствор этот содержит около 70% азотной кислоты. Все растворы с иным содержанием кислоты будут представлять температуру К. ниже 120,5 (Пропиловый спирт с температурой К. 97,4° образует с водой раствор, кипящий без изменения состава при 85,5°, т. е. при температуре низшей, чем температура К. обеих составных частей раствора. При кипении раствора иного состава, чем раствор с максимальной или с минимальной температурой К., температура К. непрерывно меняется и происходит изменение состава раствора с тем лишь отличием, что окончательным результатом повторенной перегонки является разделение взятого раствора на две части: постоянно кипящий раствор с максимальной, или с минимальной температурой К. и более или менее чистая жидкость, содержавшаяся в избытке. И в этом случае при К. раствора удаляются части ниже кипящие, а остаются — выше кипящие. Наглядное представление об условиях К. смешанных жидкостей и об условиях образования постоянно кипящих растворов могут дать прилагаемые кривые, представляющие типические формы зависимости между составом раствора и упругостью его пара при постоянной температуре.

4) Зависимость между температурой К. и составом жидкостей. Для простых тел зависимость эта определяется периодическим законом. Из числа соединений наибольшее число жидкостей приходится на область органических соединений и здесь зависимость между темп. К. и составом была предметом многих исследований. Первоначальное предположение о постоянной разности в температурах К. при постоянной разности в составе не оправдалось на опыте.В гомологических рядах разность температур К. при разнице в составе на СН2 меняется в одном и том же ряду и неодинакова в разных рядах, как это можно видеть из след. примеров:

Углеводороды n CnH2n+2 разность 1 -164° — 2 -90° 74° 3 -37° 53° 4 +1° 36° 5 +38° 37° 6 +70° 32° Хлоргидрины n CnH2n+1Cl разность 1 -22° 34° 2 +12° 34° 3 +46° 32° 4 +78° 29° 5 +107° 26° 6 +133° — Спирты n CnH2n+1OH разность 1 66° — 2 78° 12° 3 97° 19° 4 117° 20° 5 137° 20° 6 157° 19° Кислоты n CnH2nO2 разность 1 100° 19° 2 119° 22° 3 141° 22° 4 163° 21° 5 184° 20° 6 204° —

Во всяком случае, замена водорода, связанного с углеродом, метилом, всегда повышает температуру К. Иное происходит при замене водорода гидроксильного: температура К. при этом сильно понижается. Напр. метиловый алкоголь кипит при 78°, а метилэтиловый эфир при 11°; уксусная кислота кипит при 119°, а ее метиловый эфир при 56° (благодаря этому, удается иногда перегонять без разложения эфиры в том случае, когда исходные вещества при перегонке разлагаются, как напр. щавелевая или масляная кислоты).

Замена H2 — О повышает температуру К. : жирные кислоты кипят приблизительно на 40° выше, чем соответствующие кислоты; альдегиды и окиси выше, чем соответствующие углеводороды. Еще более повышается температура К. при замене Н — ОН: температура К. бутана 1°, а бутилового спирта (нормального) — 117°; темпер. К. пентана 38°, а амилового спирта 138°; темпер. К. толуола 111°, а бензилового спирта 207°. То же явление обнаруживается при переходе от одноатомных спиртов к многоатомным; этиловый спирт (С2Н5ОН) кипит при 78°, а этиленгликоль С2Н4(ОН)2 кипит при 198°; пропиловый спирт (C3H7OH) кипит при 97°, а глицерин (С3Н5(ОН)3) кипит при 290°. Изменения температуры К. при изменениях состава не выражаются простым законом постоянной разности; но из приведенных примеров, однако, видно, что одинаковые изменения в составе влекут за собой сходные изменения в температуре К. тел, при чем весьма часто и самая величина этих изменений темпер. К. колеблется в весьма узких пределах. Если различия в составе состоят лишь в неодинаковом строении, то и здесь наблюдаются различия температуры К. тем большие, чем глубже различия в строении. Напр., изомерные вещества формулы С3H6O, амиловый спирт и пропиловый альдегид, кипят при 97° и 69°; а три изомерных диметилбензола кипят: орто — 142°, мета и пара при 137°.

Д. Коновалов.

Кипр

Кипр (греческ. KuproV;, латин. Cyprus, турец. Kibris) — остров в северовосточном конце Средиземного моря, под 34°34' и 35°43°' сев. шир.; имеет форму вытянутого четырехугольника, с длинным узким полуостровом Карпас и мысом св. Андрея на СВ. По величине — 9601 кв. км. — К. занимает третье место среди о-вов Средиземного моря. Вдоль сев. берега, от мыса Кормахити на 3 до мыса св. Андрея на В, тянется известняковая горная цепь, достигающая наибольшей высоты в своей зап. части. Параллельно ей тянется южнее горный хребет Олимп; гл. его вершины Тродос (2018 м.), Махера (1442 м.) и Ставрос (1740 м.). Между обеими горными цепями находится равнина Мессариа, орошаемая главной р. о-ва, немноговодным Пидиасом (Pediaos древних), впадающим в залив Фамагуста, на вост. берегу. Климат К. вообще может быть назван теплым и сухим. В г. Ларнака ср. темп. года 20,5, января 11,6, Июля 28,6. Как и в Сирии и Палестине, осень гораздо теплее весны, напр. ср. темп. мая 21,9, октября 24,6. В год выпадает всего 34 см. осадков (исключительно в виде дождя), в том числе 9/10 с ноября по апрель, а в июле и августе его совсем не бывает. Морозов на берегу моря не бывает. В горах К. значительно холоднее. Растительность богатая там, где имеется достаточно воды, но плодородная почва в запустении: обрабатывается лишь 1/5 всей поверхности. Только пшеница, ячмень и некоторые плодовые деревья, напр. маслина, не требуют искусственного орошения, необходимого для кормовых трав и овощей. Землетрясения, войны, повальные болезни и варварское турецкое владычество содействовали обезлюдению острова, имевшего в древности более миллиона жителей. В 1891 г. их было 209291 (из них 3/4 христиан, остальные магометане); они занимаются хлебопашеством, садоводством, шелководством, выделкой ковров, глиняной посуды и кож. Скотоводство (овцы, козы, свиньи), пчеловодство и шелководство незначительны, как и виноградарство, хотя условия для последнего весьма благоприятны. Вывоз вина, соли, пшеницы, ячменя, хлопчатой бумаги, южных фруктов. Меры употребляются английские, а неофициально — и прежние турецкие. Золото: 1фн. стерл. =180 пиастрам, 1 наполеон=142 пиастр. и 20 парам; серебро: 1 шилл. =4,2 пиастра; бронз.: 1 пиастр=40 парам. Из линейных мер — пик, большой и малый, из весовых — кантар с подразделениями и проч. Главный г. о-ва — Левкозия (прежде Никозия) — местопребывание архиепископа К. Лучшая гавань и торговый пункт — Ларнака. О-в делится на 6 округов и управляется представителем королевы Великобритании, наряду с которым стоит законодательный совет из 4 — 8 членов.

История и археология. Остров был издревле богат металлами, особенно медью (откуда лат. название ее — cuprum), и судостроительным лесом. Древнейшее население было семитского происхождения, из племени хеттитов. Очень рано появились здесь финикийцы; они основали главнейшие города: Саламин, Амафунт, Паф, Соли и др., они же перенесли сюда своих богов и верования. Позже прибыли греческие переселенцы разных племен, преимущественно ионяне и дорийцы, образовавшие несколько (9) небольших монархических государств. С VIII века до Р. Хр. Кипр был подчинен ассирийскому владычеству, но греческие государи продолжали царствовать в качестве вассалов. После падения Ассирийского царства высшая власть на острове перешла к Тиру, пока Амазис не покорил его Египту, ок. 560 г. С 525 г. он стал принадлежать персидской монархии, у которой его отняли греки в 479 — 478 гг. В 410 г. саламинский царь Евагор (ум. 374 г.) объединил в своих руках весь о-в, по языку представлявшийся уже почти вполне греческим государством. По распадении империи Александра Вел. К. долгое время служил яблоком раздора между Сирией и Египтом, который окончательно и завладел им. Птолемеи правили здесь лично или же присылали сюда своих младших братьев. В 58 г. Катон (Утический или Младший) присоединил К. к римским владениям, именно к провинции Киликии. Позже К. вошел в состав восточн. части Римской империи и получал правителей из семьи императора. В 1182 г. Исаак Комнен распоряжался им независимо. Девять лет спустя о-в перешел к Лузиньянской династии, владевшей им до 1489 г. Затем он принадлежал венецианцам, у которых был отнят в 1571 г. турками. Египетский паша Мегмет-Али занял его в 1832 г., но вскоре принужден был возвратить его султану. Во время берлинского конгресса Англия настояла на уступке ей К., под предлогом временной оккупации (конвенция1/13 Июня 1878 г.). В наше время был сделан на К. ряд в высшей степени важных археологических находок. Герцог de-Luynes, на основании монет и надписей, первый определил, что на К. господствовал, в очень отдаленную от нас пору, собственный местный алфавит, повидимому, происходивший от алфавита хеттитов — слоговой, а не буквенный. Писанные на нем надписи были прочитаны Schmidt'oм, Siegismund'ом и Deecke. Местонахождения прежних городов — Куриума, Голгои, Амафунта, Пафа и др. — раскапывали, начиная с 1865 г., Lang, Colonna-Ceccaldi и особенно консул Сев. Ам. Шт., итальянец Palme di Cesnola, открывший знаменитую сокровищницу в Куриуме, находящуюся теперь в Нью-Йopке. Музеи луврский, британский и константинопольский также обогатились, благодаря этим раскопкам, резными чашами ассиро-египетского стиля и многочисленными статуями из известкового камня, стилей ассирийского, египетского и греческого, изображающими жрецов или божества.

Литература. Engel, «Kypros» (Берлин, 1841); De Mas Latrie, «Histoire de l'ile de Chypre sous le regne des princes de la maison de Lusignan» (3 изд., П., 1851 — 62); его же, «L'ile de Chypre» (П., 1879) и «Documents nouveaux, servant de preuves a l'histoire de Chypre» (П., 1882}; Sassenay, «Chypre, histoire et geographie» (П., 1878) Cesnola, «Cyprus; its ancient cities, tombs and temples» (Лонд., 1877); его же, «Cаламино»(Турин, 1891); Lоеher, «Reiseberichte uber Natur und Landschaft, Volk und Geschichte» (3 изд., Штуттг., 1879); Baker, «Cyprus as I saw it in 1879» (Лонд., 1879); Ohnefalsch-Richer, «Cyprische Reisestudien» (в журн. «Unsere Zeit», за 1880 г., 1); Herquet, «Cyprische Konigsgestalten des Hauses Lusignan» (Галле, 1881); Kitchener, «Trigonometrical survey of the island of Cyprus» (Лонд., 1885; 15 листов в 1:63360); Perrot et Chipiez, «Histoire de l'art dans l'antiquite» (т. 31-й, «Phenicie, Chypre», П., 1885); Holwerda, «Die alten Kyprier in Kunst und Kultus» (Лейд., 1885); Cobham, «An attempt on a bibliography of Cyprus» (Никозия, 1886); Agnes Smith, «Through Cyprus» (Лонд., 1887); Sakellarios, «Ta Kupriaka» (2 изд., Афины, 1890 — 91); Doell, «Die Sammlung Cesnola» (СПб., 1873); Geslin, «L'Art Cypriote» (в «Musee archeologique», 1879); «Gazette archeologique» (III, p. 117; IV, p. 198); Stark, «Systematik und Geschichte der Archeologie der Kunst» (Лпц., 1880, стр. 346 и 347); Lolling, «Hellenische Landeskunde und Topographie», 1887 («Handbuch der Klassischen Altertumswissenschaft», т. Ill); Павловский, «Значение и успехи классической филологии» (Одесса, 1891, «О Кипре», стр. II и 12); Зелинский, «Кипр и его богиня» (рецензия на книгу Энмана, в "Журн. Мин. Нар. Просв. ").

А. К. В.

Кипрей

Кипрей (Epilobium L.) — травы или полукустарники, образующие род из семейства кипрейных. Листья у них цельные, противоположные или разбросанные по стеблю так, что через них нельзя провести правильной винтовой линии. Цветы в углах листьев или образуют верхушечную кисть; построены по четверному плану; тычинок 8. Нижняя завязь, 4-гранная, превращается в очень длинную коробочку, тоже 4-гранную, которая лопается на 4 створки, начиная сверху, и выпускает множество семян, разлетающихся с помощью длинных волосков, находящихся на них. Сюда 50 видов, распространенных во всех умеренных и холодных странах; весьма обильны и в Новой Зеландии. В русской европейской флоре их 17, из которых самый известный Е. augustifolium — К. или иван-чай, также кoпopcкий чай. Это высокая, иногда выше человеческого роста, трава, растущая во всех умеренно-холодных и умеренных странах Старого и Нового Света у воды, на сыроватой почве, на порубах. Темнорозовые, довольно крупные, цветы ее собраны длинными верхушечными кистями. Длинноволосые мелкие семена разносятся ветром на далекие расстояния. Листья этого растения служат в России для подделки чая, Приготовленные на манер настоящего чая, они или подмешиваются к нему, или же продаются прямо под именем чая. Его выделывают местами тысячами и десятками тысяч пудов, напр. в Ржеве и пр. Продажа копорского чая запрещена, хотя он не заключает в себе ничего вредного. Отличить его от листьев настоящего чая нетрудно. Для этого достаточно его размочить: форма листьев и зубчатость краев другие. У Иван-чая листья ланцетовидные, . совершенно цельные или неявственно железисто-пильчатые; у настоящего чая — листья эллиптические или продолговато-ланцетные, явственно пильчатые по краям.

А. Бекетов.

К., Epilobium angustifolium L., вредное сорное лесное растение, появляющееся в большом количестве на срубленных лесосеках, преимущественно на свежей почве, богатой перегноем, и сильно заглушающее появляющиеся там древесные всходы или произведенную посадку саженцев. Прежде предполагали, что К. однолетнее растение, размножающееся исключительно семенами, но теперь, по исследованиям проф. Прантля, К. следует причислить к многолетним растениям, возобновляющимся не только семенами, но и корневыми отпрысками; для истребления его необходимо удаление корней, что стоит дорого, или возобновление лесонасаждений семянными лесосеками, с более поздним выставлением молодняков на свободу и надлежащим потом осветлением их, обламыванием и расправлением кипрея возле деревец. Замечено, что К. через 3 — 4 года существования почти исчезает с лесосеки, уступая свое место малорослой растительности и затем злакам. Он доставляет пчелам хорошую взятку меда, а потому весьма полезен для пчеловодства. В. С.

Никто не решился оставить свой комментарий.
Будь-те первым, поделитесь мнением с остальными.
avatar